Genomics

Genomes instruct cells to make organisms from conception to maturity

In mammals, genomes represent two volume 'recipe books', with a volume coming from each parent

Specific instructions (genes) are written in a genomic language (a genetic or DNA 'code') made of a 4-letter alphabet (nucleotides)

FOUR LETTER ALPHABET (NUCLEOTIDES)

INSTRUCTIONS (GENES)

AT

AGTCACAGTCTCTGAAGTCACAGTCTCTGA

Variation exists in genes due to mutation producing nucleotide changes (SNPs). This may result in variable traits which we can see to preserve, harvest and manage.

Scanning species for large numbers of nucleotide variants (SNPs) from whole genome sequencing technology forms the basis for multiple genomics-based tool applications

Whole Genome Sequencing Process: 1) Sequence a high-quality reference genome for species ; 2) Sequence multiple genomes from different populations using reference genome as guide; 3) Identify varying genomic areas (e.g., SNPs) as markers for tools.

Selected Applications

C ${ }_{C} R_{A} O_{N} J_{A} C_{D}$

Genomic basis of traits

Populations may vary in genomic diversity underpinning desirable traits (e.g., pelt color/quality, immunity)

Linking SNPs with traits may identify useful genes which could be introduced into vulnerable populations

Population structure

Outwardly indistinct populations with limited interbreeding may reflect multiple independent or semi-independent populations

Thousands to millions of SNPs can identify hidden populations and identify inbreeding

Metagenomics

Analysis of DNA barcodes (species-specific DNA tags) may identify multiple species at once and place them in a broader ecosystem context

Environmental DNA

Non-invasive sampling may democratize, scale-up and empower community
biodiversity surveys

Funding

E.g.

Change in food eaten by Muskoxen may be monitored in response to climate-induced shifts in vegetation

Informative predictions of future northerly movements by southern species (e.g., invasive species).

